Device Thrombogenicity Emulator (DTE)--design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs.
نویسندگان
چکیده
Patients who receive prosthetic heart valve (PHV) implants require mandatory anticoagulation medication after implantation due to the thrombogenic potential of the valve. Optimization of PHV designs may facilitate reduction of flow-induced thrombogenicity and reduce or eliminate the need for post-implant anticoagulants. We present a methodology entitled Device Thrombogenicty Emulator (DTE) for optimizing the thrombo-resistance performance of PHV by combining numerical and experimental approaches. Two bileaflet mechanical heart valves (MHV) designs, St. Jude Medical (SJM) and ATS, were investigated by studying the effect of distinct flow phases on platelet activation. Transient turbulent and direct numerical simulations (DNS) were conducted, and stress loading histories experienced by the platelets were calculated along flow trajectories. The numerical simulations indicated distinct design dependent differences between the two valves. The stress loading waveforms extracted from the numerical simulations were programmed into a hemodynamic shearing device (HSD), emulating the flow conditions past the valves in distinct 'hot-spot' flow regions that are implicated in MHV thrombogenicity. The resultant platelet activity was measured with a modified prothrombinase assay, and was found to be significantly higher in the SJM valve, mostly during the regurgitation phase. The experimental results were in excellent agreement with the calculated platelet activation potential. This establishes the utility of the DTE methodology for serving as a test bed for evaluating design modifications for achieving better thrombogenic performance for such devices.
منابع مشابه
Design optimization of a mechanical heart valve for reducing valve thrombogenicity-A case study with ATS valve.
Patients implanted with mechanical heart valves (MHV) or with ventricular assist devices that use MHV require mandatory lifelong anticoagulation for secondary stroke prevention. We recently developed a novel Device Thrombogenicity Emulator (DTE) methodology that interfaces numerical and experimental approaches to optimize the thrombogenic performance of the device and reduce the bleeding risk a...
متن کاملDevice thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices.
Thrombotic complications with mechanical circulatory support (MCS) devices remain a critical limitation to their long-term use. Device-induced shear forces may enhance the thrombotic potential of MCS devices through chronic activation of platelets, with a known dose-time response of the platelets to the accumulated stress experienced while flowing through the device-mandating complex, lifelong ...
متن کاملDevice Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
Mechanical circulatory support (MCS) devices provide both short and long term hemodynamic support for advanced heart failure patients. Unfortunately these devices remain plagued by thromboembolic complications associated with chronic platelet activation--mandating complex, lifelong anticoagulation therapy. To address the unmet need for enhancing the thromboresistance of these devices to extend ...
متن کاملThromboresistance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulation- optimized HeartAssist 5 VAD.
Approximately 7.5 × 106 patients in the US currently suffer from end-stage heart failure. The FDA has recently approved the designations of the Thoratec HeartMate II ventricular assist device (VAD) for both bridge-to-transplant and destination therapy (DT) due to its mechanical durability and improved hemodynamics. However, incidence of pump thrombosis and thromboembolic events remains high, an...
متن کاملFlow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
A model for platelet activation based on the theory of damage, incorporating cumulative effects of stress history and past damage (senescence) was applied to a three-dimensional (3-D) model of blood flow through a St. Jude Medical (SJM) bileaflet mechanical heart valve (MHV), simulating flow conditions after implantation. The calculations used unsteady Reynolds-averaged Navier-Stokes formulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2010